Numerical Investigation of Krylov Subspace Methods for Solving Non-symmetric Systems of Linear Equations with Dominant Skew-symmetric Part

نویسندگان

  • LEV A. KRUKIER
  • OLGA A. PICHUGINA
  • VADIM SOKOLOV
  • V. SOKOLOV
چکیده

Numerical investigation of BiCG and GMRES methods for solving non-symmetric linear equation systems with dominant skew-symmetric part has been presented. Numerical experiments were carried out for the linear system arising from a 5-point central difference approximation of the two dimensional convection-diffusion problem with different velocity coefficients and small parameter at the higher derivative. Behavior of BiCG and GMRES(10) has been compared for such kind of systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Comparison of some Preconditioned Krylov Methods for Solving Sparse Non-symmetric Linear Systems of Equations

Large sparse non-symmetric linear systems of equations often occur in many scientific and engineering applications. In this paper, we present a comparative study of some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and GMRES for solving such systems. To demonstrate their efficiency, we test and compare the numerical implementations of these methods on five numerical exa...

متن کامل

Iterative Solution of Skew-Symmetric Linear Systems

We offer a systematic study of Krylov subspace methods for solving skew-symmetric linear systems. For the method of conjugate gradients we derive a backward stable block decomposition of skew-symmetric tridiagonal matrices and set search directions that satisfy a special relationship, which we call skew-A-conjugacy. Imposing Galerkin conditions, the resulting scheme is equivalent to the CGNE al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005